Log-concavity of P-recursive sequences
نویسندگان
چکیده
We consider the higher order Turán inequality and log-concavity for sequences {an}n≥0 such thatan−1an+1an2=1+∑i=1mri(logn)nαi+o(1nβ), where m is a nonnegative integer, αi are real numbers, ri(x) rational functions of x and0<α1<α2<⋯<αm<β. will give sufficient condition on ℓ-log-concavity n sufficiently large. Many P-recursive fall in this frame. At last, we method to find N that any n>N, holds.
منابع مشابه
Skew log-concavity of the Boros-Moll sequences
Let [Formula: see text] be a triangular array of numbers. We say that [Formula: see text] is skew log-concave if for any fixed n, the sequence [Formula: see text] is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave.
متن کاملMatroids and log-concavity
We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...
متن کاملBell Numbers, Log-concavity, and Log-convexity
Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...
متن کاملLog-Concavity and Symplectic Flows
We prove the logarithmic concavity of the Duistermaat-Heckman measure of an Hamiltonian (n− 2)-dimensional torus action for which there exists an effective commuting symplectic action of a 2-torus with symplectic orbits. Using this, we show that any symplectic (n− 2)-torus action with non-empty fixed point set which satisfies this additional 2-torus condition must be Hamiltonian.
متن کاملA Note on Log-Concavity
This is a small observation concerning scale mixtures and their log-concavity. A function f(x) ≥ 0, x ∈ Rn is called log-concave if f (λx + (1− λ)y) ≥ f(x)f(y) (1) for all x,y ∈ Rn, λ ∈ [0, 1]. Log-concavity is important in applied Bayesian Statistics, since a distribution with a log-concave density is easy to treat with many different approximate inference techniques. For example, log-concavit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2021
ISSN: ['1095-855X', '0747-7171']
DOI: https://doi.org/10.1016/j.jsc.2021.03.004